Special arrays

Index

API

Mill.maybehotFunction
maybehot(l, labels)

Return a MaybeHotVector where the first occurence of l in labels is set to 1 and all other elements are set to 0.

Examples

julia> maybehot(:b, [:a, :b, :c])
3-element MaybeHotVector with eltype Bool:
 ⋅
 1
 ⋅

julia> maybehot(missing, 1:3)
3-element MaybeHotVector with eltype Missing:
 missing
 missing
 missing

See also: maybehotbatch, MaybeHotVector, MaybeHotMatrix.

source
Mill.maybehotbatchFunction
maybehotbatch(ls, labels)

Return a MaybeHotMatrix in which each column corresponds to one element of ls containing 1 at its first occurence in labels with all other elements set to 0.

Examples

julia> maybehotbatch([:c, :a], [:a, :b, :c])
3×2 MaybeHotMatrix with eltype Bool:
 ⋅  1
 ⋅  ⋅
 1  ⋅

julia> maybehotbatch([missing, 2], 1:3)
3×2 MaybeHotMatrix with eltype Union{Missing, Bool}:
 missing  ⋅
 missing  1
 missing  ⋅

See also: maybehot, MaybeHotMatrix, MaybeHotVector.

source
Mill.maybecoldFunction
maybecold(y, labels=1:size(y,1))

Similar to Flux.onecold but when y contains missing values, missing is in the result as well.

Therefore, it is roughly the inverse operation of maybehot or maybehotbatch.

Examples

julia> maybehot(:b, [:a, :b, :c])
3-element MaybeHotVector with eltype Bool:
 ⋅
 1
 ⋅

julia> maybecold(ans, [:a, :b, :c])
:b

julia> maybehot(missing, 1:3)
3-element MaybeHotVector with eltype Missing:
 missing
 missing
 missing

julia> maybecold(ans)
missing

julia> maybecold(maybehotbatch([missing, 2], 1:3))
2-element Vector{Union{Missing, Int64}}:
  missing
 2

See also: Flux.onecold, maybehot, maybehotbatch.

source
Mill.NGramIteratorType
NGramIterator{T}

Iterates over ngram codes of collection of integers s using Mill.string_start_code() and Mill.string_end_code() for padding. NGram codes are computed as in positional number systems, where items of s are digits, b is the base, and m is modulo.

In order to reduce collisions when mixing ngrams of different order one should avoid zeros and negative integers in s and should set base b to the expected number of unique tokens in s.

See also: NGramMatrix, ngrams, ngrams!, countngrams, countngrams!.

source
Mill.NGramIteratorMethod
NGramIterator(s, n=3, b=256, m=typemax(Int))

Construct an NGramIterator. If s is an AbstractString it is first converted to integers with Base.codeunits.

Examples

julia> NGramIterator("deadbeef", 3, 256, 17) |> collect
10-element Vector{Int64}:
  2
 16
  9
  9
  6
 10
 11
 15
  2
  6

julia> NGramIterator(collect(1:9), 3, 10, 1009) |> collect
11-element Vector{Int64}:
 221
 212
 123
 234
 345
 456
 567
 678
 789
 893
 933

julia> Mill.string_start_code()
0x02

julia> Mill.string_end_code()
0x03

See also: NGramMatrix, ngrams, ngrams!, countngrams, countngrams!.

source
Mill.countngramsFunction
countngrams(o, x, n, b, m)

Count the number of of n grams of x using base b and modulo m into a vector of length m in case x is a single sequence or into a matrix with m rows if x is an iterable of sequences.

Examples

julia> countngrams("foo", 3, 256, 5)
5-element Vector{Int64}:
 2
 1
 1
 0
 1

julia> countngrams(["foo", "bar"], 3, 256, 5)
5×2 Matrix{Int64}:
 2  1
 1  0
 1  2
 0  0
 1  2

See also: countngrams!, ngrams, ngrams!, NGramMatrix, NGramIterator.

source
Mill.countngrams!Function
countngrams!(o, x, n, b, m=length(o))

Count the number of of n grams of x using base b and modulo m and store the result to o.

Examples

julia> o = zeros(Int, 5)
5-element Vector{Int64}:
 0
 0
 0
 0
 0

julia> countngrams!(o, "foo", 3, 256)
5-element Vector{Int64}:
 2
 1
 1
 0
 1

See also: countngrams, ngrams, ngrams!, NGramMatrix, NGramIterator.

source
Mill.NGramMatrixType
NGramMatrix{T, U, V} <: AbstractMatrix{U}

A matrix-like structure for lazily representing sequences like strings as ngrams of cardinality n using b as a base for calculations and m as the modulo. Therefore, the matrix has m rows and one column for representing each sequence. Missing sequences are supported.

See also: NGramIterator, ngrams, ngrams!, countngrams, countngrams!.

source
Mill.NGramMatrixMethod
NGramMatrix(s, n=3, b=256, m=2053)

Construct an NGramMatrix. s can either be a single sequence or any AbstractVector.

Examples

julia> NGramMatrix([1,2,3])
2053×1 NGramMatrix{Vector{Int64}, Vector{Vector{Int64}}, Int64}:
 [1, 2, 3]

julia> NGramMatrix(["a", missing, "c"], 2, 128)
2053×3 NGramMatrix{Union{Missing, String}, Vector{Union{Missing, String}}, Union{Missing, Int64}}:
 "a"
 missing
 "c"

See also: NGramIterator, ngrams, ngrams!, countngrams, countngrams!.

source
Mill.PostImputingMatrixType
PostImputingMatrix{T <: Number, U <: AbstractMatrix{T}, V <: AbstractVector{T}} <: AbstractMatrix{T}

A parametrized matrix that fills in a default vector of parameters whenever a "missing" column is encountered during multiplication.

Supports multiplication with NGramMatrix, MaybeHotMatrix and MaybeHotVector. For any other AbstractMatrix it falls back to standard multiplication.

Examples

julia> A = PostImputingMatrix(ones(2, 2), -ones(2))
2×2 PostImputingMatrix{Float64, Matrix{Float64}, Vector{Float64}}:
W:
 1.0  1.0
 1.0  1.0

ψ:
 -1.0
 -1.0

julia> A * maybehotbatch([1, missing], 1:2)
2×2 Matrix{Float64}:
 1.0  -1.0
 1.0  -1.0

See also: PreImputingMatrix.

source
Mill.PostImputingMatrixMethod
PostImputingMatrix(W::AbstractMatrix{T}, ψ=zeros(T, size(W, 1))) where T

Construct a PostImputingMatrix with multiplication parameters W and default parameters ψ.

Examples

julia> PostImputingMatrix([1 2; 3 4])
2×2 PostImputingMatrix{Int64, Matrix{Int64}, Vector{Int64}}:
W:
 1  2
 3  4

ψ:
 0
 0

See also: PreImputingMatrix.

source
Mill.PreImputingMatrixType
PreImputingMatrix{T <: Number, U <: AbstractMatrix{T}, V <: AbstractVector{T}} <: AbstractMatrix{T}

A parametrized matrix that fills in elements from a default vector of parameters whenever a missing element is encountered during multiplication.

Examples

julia> A = PreImputingMatrix(ones(2, 2), -ones(2))
2×2 PreImputingMatrix{Float64, Matrix{Float64}, Vector{Float64}}:
W:
 1.0  1.0
 1.0  1.0

ψ:
 -1.0  -1.0

julia> A * [0 1; missing -1]
2×2 Matrix{Float64}:
 -1.0  0.0
 -1.0  0.0

See also: PreImputingMatrix.

source
Mill.PreImputingMatrixMethod
PreImputingMatrix(W::AbstractMatrix{T}, ψ=zeros(T, size(W, 2))) where T

Construct a PreImputingMatrix with multiplication parameters W and default parameters ψ.

Examples

julia> PreImputingMatrix([1 2; 3 4])
2×2 PreImputingMatrix{Int64, Matrix{Int64}, Vector{Int64}}:
W:
 1  2
 3  4

ψ:
 0  0

See also: PostImputingMatrix.

source